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In this chapter we demonstrate how a genetic algorithm using
a multi-objective fitness function can be used to automatically de-
sign self-replicating structures in cellular automata models. Past
models of self-replicating structures have been manually designed,
a difficult and time-consuming process. The self-replicating struc-
tures designed using our techniques compare favorably in terms of
simplicity with those created manually in the past, but differ in in-
teresting ways. These results suggest that further exploration in the
space of possible self-replicating structures will yield additional new
structures. Furthermore, the research described here sheds light on
the process of creating self-replicating structures, which could poten-
tially lead to future studies on the discovery of novel self-replicating
molecules and self-replicating assemblers in nanotechnology.
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1 Introduction

Self-replicating systems have the ability to produce copies of them-
selves. Biological organisms are the most familiar examples of such
systems, and until the late 1940s, the only instances formally re-
searched. Mathematicians and scientists began studying artificial
self-replicating systems when it became desirable to gain a deeper
understanding of complex systems and the fundamental information-
processing principles involved in self-replication [46], [47]. The initial
models consisted of abstract logical machines, or automata, embed-
ded in cellular spaces [2], [8], [14], [19], [38]. Other computational
models, such as self-replicating computer programs have also been
investigated [17], [37], as well as mechanical and biochemical mod-
els [15], [32], [33]. The field of artificial life, which studies life-like be-
haviors (such as self-replication) from a computational perspective,
grew largely out of work based on self-replicating cellular automata
structures [20]. The automatic discovery of such systems could be
useful in areas such as nanotechnology [9], programming massively
parallel computers [36], and computer viruses [16].

Over the decades since von Neumann first demonstrated cellular au-
tomata structures that can self-replicate [47], theoretical and mod-
eling studies have led to progressively simpler and smaller struc-
tures [8], [5], [19], [38]. They have produced structures that do
problem solving while replicating [7], [34], [43], as well as demon-
strated that self-replicating structures can emerge from a “sea” of
non-replicating components [6]. However, all such past models have
been manually designed, a process that is very difficult and time-
consuming, and is prone to subjective biases of the implementor.

This research [26] presents the use of genetic algorithms [10], [13] to
discover automata rules that govern emergent self-replicating pro-
cesses. Identification of effective performance measures (fitness func-
tions) for self-replicating structures is the key challenge in this prob-
lem. A genetic algorithm using multiobjective fitness criteria was
applied to automate rule discovery. The experimental results show
that statistically significant quantities of discovered structures were



found, showing for the first time that genetic algorithms can be used
to successfully automate the search for self-replicating structures.

The specific examples of self-replicating structures presented here
provide evidence that our techniques are effective. While these self-
replicating structures are specialized, the techniques by which they
were evolved are not, being quite general and applicable to other
structures in cellular automata. Evidence of this generality is pre-
sented by using the same fundamental technique for different size
component structures. The main factor currently limiting the com-
plexity and size of evolved structures is computer time.

The size of the search spaces for CA models (the set of all possible
CA rule tables) can be incredibly large. Genetic algorithms are a
well-known strategy for searching such extremely large search spaces.
In addition to its size, the search space fitness landscape is not well
understood. While there are detailed reports examining small (two
state) cellular automata [48], little has been reported which attempts
to understand the larger search spaces of models having more than
two states. Such search spaces are very unlikely to be smooth and
unimodal, which would suggest they cannot effectively be searched
using gradient-ascent algorithms.

We provide a crossover technique that partitions the rule table genome
into segments, one segment per cell state. This has the effect of
evolving “state behaviors” independently, and proved to be more ef-
fective than any of the standard crossover techniques that were tried.
This crossover technique may prove useful in general for genetic al-
gorithm practitioners when evolving cellular automata rule sets. As
researchers continue to evolve successively larger cellular automata
models, having effective genetic operators can greatly speed up the
search.

In this chapter, the goal of automatically finding self-replicating
structures is not directly concerned with finding the optimal self-
replicating structure, the definition of which would be subjective.
Given that less than 30 self-replicating structures have been re-
ported in the literature, finding a diverse set of such structures is



of greater importance and more interesting. Our results show that
novel self-replication processes were uncovered by the genetic algo-
rithm. For example, some of our structures both rotate and move
during self-replication, and some leave around unused components
(debris) which promote the formation of new structures. Such be-
haviors, which have not been used or considered in past manually-
designed self-replicating structures, are especially interesting, sug-
gesting that evolutionary computation can discover novel design con-
cepts of general value.

A new paradigm for cellular space models with certain rotational
symmetries is introduced which significantly reduces rule table size
without adversely affecting the key properties of the model. Called
orientation-insensitive input, this technique reduces the search space
size, thus facilitating the search process. Experimental results using
genetic algorithms are presented which verify this.

The remainder of this chapter is organized as follows. Cellular au-
tomata and self-replicating structures are introduced and described
in Section 2. Section 3 presents the genetic algorithm that was ap-
plied, and in Section 4 our experimental results are analyzed. We
discuss our conclusions and future work in Sections 5 and 6.

2 Cellular Automata and Self-replicating

Structures

2.1 Cellular Automata

Cellular automata (CA) are a class of spatially-distributed dynam-
ical system models in which many simple components interact to
produce potentially complex patterns of behavior[8], [48]. In a cel-
lular automata model, time is discrete, and space is divided into an
N -dimensional lattice of cells, each cell representing a finite state
machine or automaton. All cells change state simultaneously with
each using the same function δ or rule table to determine its next



state as a function of its current state and the state of neighboring
cells. This set of adjacent cells is called a neighborhood, the size of
which, n, is commonly five or nine cells in 2-D models (see Figure 1).
By convention, the center cell is included in its own neighborhood.
Each cell can be in one of k possible states, one of which is des-
ignated the quiescent or inactive state. When a quiescent cell has
an entirely quiescent neighborhood, a widely accepted convention is
that it will remain quiescent at the next time step.
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Figure 1: Common neighborhood templates in 2-D CAs: (a) 5-cell
von Neumann neighborhood; (b) 9-cell Moore neighbor-
hood

The CA rule table is a list of transition rules that specify the next
state for every possible neighborhood combination. In a 2-D, 5-
neighbor model the individual transition rules would be of the form
CTRBL→ C′, where CTRBL specifies the states of the Center, Top,
Right, Bottom, and Left positions of the neighborhood’s present
state, and C′ represents the next state of the center cell.

The underlying space of CA models is typically defined as being
isotropic, meaning that the absolute directions of north, south, east,
and west are indistinguishable. However, the rotational symmetry of
cell states is frequently varied. Strong rotational symmetry implies
that all cell states are unoriented, meaning that each neighbor to a
cell has no distinguishable orientation. Weak rotational symmetry
implies that at least one cell state1 is directionally oriented, mean-

1The quiescent state is always a strongly rotation symmetric cell state and is
generally included in CA models with weak rotational symmetry.



ing that the cell designates specific neighbors as being its top, right,
bottom, and left neighbors. For example, the cell state designated ↑
in von Neumann’s work is weakly-symmetric and thus permutes to
different cell states →, ↓, and ← under successive 90◦ rotations. It
represents one oriented component that can exist in four orientations.
In CAs that contain both weak and strong rotationally symmetric
states, it is common to represent the “strong” states using symbols
that appear rotationally symmetric (e.g., ◦, +, ×), and the “weak”
states (components) using symbols that are not rotationally sym-
metric (e.g., ↑, A, L).

In cellular automata models with weak rotational symmetry, an au-
tomaton is sensitive to the orientation of states of its neighboring
cells, and uses this input to make a state transition. We call this
method of cell input orientation sensitive input. We introduce an
alternative method in which an automaton receives only informa-
tion about its neighboring cell’s component type, and not the com-
ponent’s orientation. Such automata are called orientation insen-
sitive. Component types are represented by underlining cell state
symbols. For example, the symbol L represents the component type
for the four oriented cell-states {L, L ,

L

, L}, with each of the four
cell-states being functionally identical. Figure 2 shows an example
of a cell’s input patterns under both types of input sensitivity. In
the orientation-sensitive case, the center cell ↑ senses an L cell state
below it. Under orientation-insensitive input, however, the center
cell ↑ senses only the component type L. Orientation insensitivity
is different from strong rotational symmetry since the positions of
top, right, bottom, left, are not explicitly distinguished for cell states
having strong rotational symmetry.

By decreasing the amount of input information each automaton re-
ceives using orientation insensitivity, the rule table is significantly
reduced in size. Using smaller rule tables has advantages such as a
decreased computational load and decreased search space size. In the
context of manipulating large rule tables, and searching vast rule ta-
ble search spaces, orientation insensitive input allows more effective
experimentation while benefiting from using the same underlying CA
space as standard CA models.
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Input pattern TRBL under
orientation-sensitive input:

→ + L ↓

Input pattern TRBL under
orientation-insensitive input:

↑ + L ↑

Figure 2: Example illustrating the effects of differing input sensitiv-
ity. The set of cell states is {•,+, L, L ,

L

, L, ↑,→, ↓,←},
and the set of component types is {L, ↑}.

The amount of rule table reduction under orientation insensitive in-
put is calculated by comparing the expressions for rule table sizes
under both methods of input. First assume there is only one strongly
rotation symmetric state. This is reasonable since it is common for
weakly rotation symmetric models to have only one strongly sym-
metric state which represents the quiescent cell state. Letting |δ|

represent rule table size, the ratio for the rule table sizes is
|δ|osi
|δ|oii
,

where osi denotes orientation sensitive input and oii denotes orien-
tation insensitive input. This ratio is derived in [25] and can be
expressed as

(βc+1)CPn−1 + c(βc+ 1)
n−1

(c+1)CPn−1 + c(c+ 1)n−1
(1)

where β denotes the number of coordinate systems rotations permit-
ted, c is the number of component types, and kCPn−1 denotes the
circular permutation function [12] used to count distinct neighbor-
hood patterns. This ratio converges to a constant as the number of
components c is increased:

lim
c→∞

(βc+1)CPn−1 + c(βc+ 1)
n−1

(c+1)CPn−1 + c(c+ 1)n−1
= βn−1 (2)

Thus as we increase the number of components, models using ori-
entation insensitive input have rule tables that are approximately



βn−1 smaller than models using orientation sensitive input. For a
typical coordinate system with β = 4, and using the von Neumann
and Moore neighborhoods, it is seen that the |δ| ratios are 256 and
65536, respectively, as the number of components increases. This
multiplicative increase translates into orders of magnitude increases
in search space sizes:

|Dkn|osi = k(|δ|osi)

' kβ
n−1(|δ|oii)

' (|Dkn|oii)
βn−1 (3)

where |Dkn| denotes the size of the set of all possible rule tables for
a CA with k states and n neighbors. From Eq. (3) it is seen that
by using orientation insensitive input, the search space is decreased
by approximately βn−1 orders of magnitude. As an example, the
models used in this work have β = 4 and n = 5, giving a difference
of 256 orders of magnitude.

2.2 Self-replicating Structures

In CA models, one state is designated the quiescent state, and the
remaining states are considered active. A self-replicating structure
is represented as a contiguous configuration of active cells that goes
through a sequence of steps to construct a duplicate of itself. The
replica can be displaced and potentially rotated relative to the orig-
inal at a later time t′. An example two-dimensional CA (from [38])
illustrating this is shown in Figure 3. This figure shows structure
UL06W8V, so named because it is an unsheathed loop (UL), is com-
prised of six components, uses weak rotational symmetry (W), is
embedded in a model in which each cell may be in one of eight states,
and uses the von Neumann neighborhood (V). Twenty CA transition
rules are used during its self-replication process. The structure that
undergoes self-replication is seen at t = 0 in Figure 3. At t = 8 the
first replicant can be seen, on the right, detached from the original
structure. Then these two structures each begin a process of self-
replication until, several time steps later, a diamond-shaped colony
has formed.
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Figure 3: The first 10 time steps of structure UL06W8V [38]. Signals
L> circulate counterclockwise around the loop starting at
t=0. By time t=10 a duplicate structure has appeared on
the right (rotated), while the arm of the original structure
has moved upwards.

Cellular space models of self-replicating systems have progressed
from complex models to less-complex models. This trend is appar-
ent in Figure 4, where complexity is plotted against time for cellular
automata models. There are certainly other measures of complex-
ity one could chose, but we have defined it to be the product of
rule table size and structure size, plotted logarithmically. As can
be seen, models designed only for self-replication are lowest in com-
plexity, with the least complex of the others having three orders of
magnitude more complexity.

In defining a self-replicating structure the notion of separation be-
tween structures needs to be made precise. The three degrees of
separation among two structures (or in general, configurations), are
noted. Using notation from [8], The set of all non-empty cells in a
configuration C is the support function, supC. Two configurations
C and C ′ are distinct [30, pg. 22] if

supC 6= supC ′ (4)

C and C ′ are disjoint if

supC ∩ supC ′ = ∅ (5)
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Figure 4: Plot of self-replicating system complexity for cellular au-
tomata models. From left to right, the × symbols are
von Neumann [47], Codd [8], Vitányi [45], Perrier et
al. [34], and the O symbols are Langton [19], Byl [5], Reggia
et al. [38], Lohn and Reggia [26].

The third and strongest form of separation is called isolation. The
neighborhood function of a cell α is g(α). The function g(α) gener-
ates the set of cells comprising the neighborhood of cell α

g(α) = {α, α+ ζ1, . . . , α+ ζn−1} (6)

where ζi(i = 1, .., n − 1) are coordinates relative to α and n is
the neighborhood size as defined previously. As an example, the
von Neumann neighborhood is expressed as

g(α) = {α, α+ (1, 0), α+ (−1, 0), α+ (0, 1), α+ (0,−1)} (7)

which generates the set of five cells: center, top, left, bottom, right.

Let the neighborhood function of a configuration C be defined as the
set of all cells that are in the neighborhood of C’s non-quiescent
cells. This function is denoted G(C) and is expressed as

G(C) =
⋃

α∈supC

g(α) (8)



A configuration C is isolated from configuration C ′, denoted C a`
C ′, if the set of cells common to both configuration’s neighborhoods
is not in supC. This is expressed as

supC ∩ (G(C) ∩G(C ′)) = ∅ (9)

Figure 5 illustrates with an example the differences between the de-
grees of separation among configurations.
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Figure 5: Illustration of the terms distinct, disjoint, and isolated
with respect to two example 4-component structures. The
von Neumann neighborhood is assumed.

A configuration S is a self-replicating structure if the following cri-
teria are met. First, S is a structure comprised of more than one
non-quiescent cell, and changes its shape during its self-replication
process. Second, replicants of S, possibly translated and/or rotated,
are created in neighbor-adjacent cells by the structure. Third, there
must exist a time t such that S can produce i or more replicants,
for any positive integer i, for infinite cellular spaces (Moore’s crite-
ria [30]). Fourth, if the self-replication process begins at time t, there
exists a time t +∆t (for finite ∆t > 1) such that the first replicant
becomes isolated from the parent structure.

The above requirements encompass the more recently reported mod-
els of self-replication, yet they preclude most trivial self-replication
processes. They also preclude “artifact” replicants – structures that



form the appropriate size and shape, for example, from a supply
of unused components without being directed to do so. The issue
of triviality was circumvented in early models by requiring universal
computation and universal construction. Inspired by biological cells,
more recent models (those starting with [19]) have abandoned this
requirement by insisting that an identifiable instruction sequence be
treated in a dual fashion: interpreted as instructions (translation),
and copied as raw data (transcription). As with unsheathed loops,
we consider the instruction sequence and the structure itself to be
the same, and thus the structure’s components directly influence its
self-replication process.

Trivial self-replicating structures are easily produced. For example,
a 1-D, 3-neighbor CA can be made to give the behaviors shown in
Figure 6. In both examples shown, the seed structures are shown
at t=0 and replicants subsequently appear isolated. Note that the
structure of Figure 6(a) would be trivially self-replicating because
of the requirement that a non-trivial self-replicating structure’s size
be greater than one. Also the requirements above state that self-
replication processes must include shape-changing steps. While Fig-
ure 6(b) does meet these requirements, it is considered trivial because
its shape remains unchanged while all of its components simultane-
ously split at t=1.

3 Genetic Algorithm

Relatively few studies have reported using genetic algorithms (or
related techniques) to automatically produce rule tables for cellular
automata (see, for example, [1], [29], [39]). With the exception of our
preliminary report [24], there are no reports of using GAs to discover
self-replicating structures in cellular space models. Such research has
most likely not been undertaken for at least two reasons. First, the
computational load can become enormous. Rule tables for modest
CA systems can quickly grow extremely large (e.g., 25,000 transi-
tion rules for a ten-state, five-neighbor, strongly rotation symmetric
CA), and manipulating numerous large rule tables in a GA (even
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Figure 6: Examples of trivial self-replicating structures in a 1-D, 3-
neighbor cellular space model. Seed structures are seen at
t=0, and three more time steps are shown. (a) 2-state, 1-
component structure; (b) 3-state, 2-component structure.

when compressed) can exhaust the memory capacity and process-
ing capabilities on many computer systems. Second, identification
of effective fitness functions is a difficult task. Apparently obvious
fitness functions, such as those that count the number of replicants,
are useless early on as there will typically be no replicants. This
has been borne out in extensive testing of randomly initialized rule
tables, and agrees with intuition, given the immense search space
sizes. Further, comparing a developing structure to a predefined
template of multiple seed structure copies (located in specific posi-
tions) by way of pattern matches fails to give partial credit during
the replication cycle itself, when the structure has changed shape as
it undergoes its self-replication. Having a predefined template also
imposes a strong bias on the self-replication process, which is unde-
sirable since it severely limits the types of self-replicating behaviors
that could possibly emerge.

Another difficulty involves the temporal aspects of self-replication:
at what time step or range of time steps should the quality of self-



replication be decided? Using cellular space state data from a sin-
gle time step would require knowing a priori in which configuration
replicants will appear and assumes that replicants appear all at once
rather than at different time steps. Data from multiple time steps are
needed so as to identify replicants as they are produced. This leads
to the problem of deciding which configuration to start with, and
how many subsequent configurations to examine for self-replicating
behavior. In general, assigning small values of fitness to behaviors
that do not resemble self-replication yet have the potential to evolve
into such a process is a difficult problem. A solution to this problem
is one of the key contributions of this chapter.

Since the GA begins with a population of randomized rule tables, it
is extremely unlikely that such rule tables will lead to self-replicating
behavior. If the fitness functions of the GA assign positive fitness
values only to rule tables that lead to self-replicating behavior, then
all rule tables will have fitnesses of zero, and the GA will not be able
to apply its genetic operators effectively. In such cases the search de-
generates into an ineffective random search process. Assigning small
values of fitness to behaviors that do not resemble self-replication
yet have the potential to evolve into such a process is needed for an
effective search.

The fitness functions derived in this section are general in that they
could be used in other 2-D cellular space automata models, and any
size and shape seed structure containing unique components may
be used. In addition, the fitness functions do not impose a strong
bias toward any particular process of self-replication. That is, in
their definitions, the fitness functions do not assign fitness based on
aspects such as: 1) the contents of specific cell locations at specific
instants, 2) whether/how the structure should translate or rotate
itself over time, 3) the quantity/timing of replicant production, or 4)
the extent to which configurations match a predefined configuration.

The problem of automatically finding rule tables that yield self-
replicating structures in cellular automata is a type of rule discovery
problem. An overview of our specific approach is given in Figure 7.
After the rule discovery process has produced a candidate solution,



the cellular space must be manually simulated to determine if the
discovered rule table does result in a self-replicating structure. This
step is needed since a rule table that scores the highest fitness could
potentially be trivial or circumvent the fitness function in unantici-
pated ways.

Description of Cellular
Space Model

( C A )

Rule Discovery Process
(GA or other technique)

Evaluation Criteria
(fitness functions)

Initial Conditions
(seed structure,

parameters)

rule
table

produces

rule
table

space
iterates

over time

simulate

Examine Results

Figure 7: Overview of the rule discovery system showing the major
components, production of a discovered rule table, and the
manner in which the discovered set of rules is analyzed.

3.1 Evolving Rule Sets using a GA

The genetic algorithm applied in this study employed a small pop-
ulation size of 100 rule tables for two reasons: computer resource
limitations, and for consistency so that GA performance using larger
CA models2 could be compared directly to those that had small CA
models. Rule tables in the GA were encoded in a natural manner:
a table containing next-state entries indexed by neighborhood pat-
terns (four rule tables are shown in Figure 8). For example, if the

2Increased number of states, thus larger rule tables.



ith transition rule of the rule table were BCCDE → A, then the ith
entry in the encoded rule table would be A. Rule table sizes for a sys-
tem with three component types are 14787, and 838 for CA models
with orientation sensitive and orientation insensitive input, respec-
tively. The type of crossover used here was a version of multi-point
crossover whereby single-point crossover is applied within segments
marked by the heavy lines in Figure 8. A crossover point was ran-
domly selected within each segment, and single-point crossover oc-
curred in each segment. The diagram shows a CA model where each
component type has only five transition rules for illustration pur-
poses. Using “d” to represent a don’t-care cell-state, we can imagine
that transition rules of the form Xdddd → d program the behavior
of component X, Ydddd → d program the behavior of component Y,
etc. Performing crossover within each segment allows the GA to op-
erate on the behavior of each component individually. At a higher
level, because the fitness functions are rewarding cooperation among
components, component types are evolved together in a co-adapted
manner. Empirical results comparing this crossover technique to
that of single-point crossover (across the entire rule table) showed
higher performance for the multiple application of crossovers. After
selection and crossover, each transition rule was subject to mutation
which occurred by randomly choosing a new state.

The evaluation phase of the GA is depicted in Figure 9. Evaluating
each individual requires that a complete CA simulation be executed
(Figure 9, middle). The initial conditions for each evaluation were
comprised of a rule table and seed structure. The seed structures
remained fixed in every GA evaluation, and the specific structures
used in the experiments described below were comprised of the two,
three, and four unique components as shown in Figure 10.

As shown in Figure 9, the fitness function used data extracted from
the first 15 configurations during an individual evaluation. Since the
seed structures that we dealt with were very small, fast replication
cycles were very likely [38]. Such cycles were generally less than 10
time steps, with critical steps of the self-replication process occurring
very early on, generally in the first five time steps. Therefore, so as
not to exclude any useful information that could occur early on,
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Figure 8: Illustration of crossover using rule tables. Parents p1 and
p2 (left) are recombined to form offspring c1 and c2 (right)
by segmenting the rule tables into c partitions according to
component type, and crossing over transition rules within
each partition, with each crossover point chosen at ran-
dom.

statistics from the first time steps are included. The choice of how
many configurations to use in the evaluation of a self-replication
process was determined as follows. Let ∆t denote the duration of
time which will be examined for fitness calculations. If ∆t is too
small, this may not give enough time for a self-replicating process
to emerge. If ∆t is too large, two undesirable situations will arise.
First, the efficiency of the GA will decrease since the GA will be
spending more time examining behaviors that, in general, do not
exhibit self-replication. The CA simulations are inside two loops of
the GA: one for each population member and one for each generation.
The product of these two numbers is on the order of 200,000 for our
experiments. Thus the expression 200, 000∆t represents the total
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Seed Structure, S0

time-step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run Simulation

Population of Rule Tables
at Generation g

1 2 100

Extract Statistical Measures from each Configuration

extract each individual

Calculate Fitness Measures, fg, fp, fr

Calculate Overall Fitness, F

Figure 9: Evaluation phase of genetic algorithm.

number of CA simulation time steps executed during a run of the
GA. For statistical sampling purposes, we required 100 GA runs per
experiment. Therefore each increment to ∆t adds 20,000,000 more
time steps to the overall experiment, which becomes a significant
computational burden. Second, as ∆t increases, the likelihood of
coincidental seed structure copies appearing increases, and this could
potentially disrupt fitness function calculations. Such copies could
then inflate the fitness values and hinder the search process. Based
on previous studies of hand-designed self-replicating structures [38]
and considering these tradeoffs, a value of ∆t < 10 was determined
too restrictive and ∆t > 20 too large. A value of ∆t = 15 time steps
was chosen.

Statistics collected from the 15 configurations of each CA simulation
are time-averaged component counts (multiplicities), adjacency in-
formation, and replicant counts. Multiplicity values M tv record the
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Figure 10: Seed structures: (a) 2-component; (b) 3-component; (c)
4-component.

quantity of each component type v at each time t. Adjacency infor-
mation includes relative positioning data regarding each component
type over time. Replicant count quantifies the number of replicants
seen at each time step.

After collection of these three types of statistics, three correspond-
ing fitness measures are computed and combined in an overall fitness
function F for each simulation. The first is a growth measure, de-
noted fg, which correlates growth in number of individual component
types with high performance. The second criteria is called the rela-
tive position measure, denoted fp. This measure is concerned with
awarding fitness to component types that have a high percentage of
neighboring components positioned in the same manner as is seen in
the seed structure. The third criteria is one that measures isolated
replicants, denoted fr. This function scans configurations looking
for isolated replicants and awards proportionate amounts of fitness
depending upon the number of replicants seen over time. Isolated
means that a structure separates completely and is surrounded by
only quiescent cells, as explained earlier.

The fitness function F used in the selection process is a linear sum
of the above three measures. Specifically, defining a fitness measure
vector f = (fg, fp, fr) and a weight vector w = (wg, wp, wr), we have

F = f ·w (10)

For convenience, the fitness measure functions in f are each nor-
malized to values in [0, 1], and weights (positive) are such that
wg + wp + wr = 1.



3.2 Fitness Measures

In order for a self-replicating process to emerge, one would expect
to observe, over time, increasing quantities of the individual compo-
nents. In analyzing past, manually-designed self-replicating struc-
tures, it was seen that individual component counts, or multiplici-
ties, generally increased over time, punctuated by periods of plateaus
and small decreases in value.

The growth measure fg used computes the degree to which each
component type maintains an increasing supply of components from
one time step to the next. The number of components of type vi at
time t is denoted M tvi . Multiplicity data forms a τ × c table, since τ
time steps are used and c components are present in the simulation:

M1v1 M1v2 · · · M1vc
M2v1 M2v2 · · · M2vc
...

...
. . .

...
M τv1 M τv2 · · · M τvc

To distill these values into a single meaningful value, multiplicities
are first converted using a function ρv, which assigns fitness based on
whether a given component type increased its production or stayed
the same, and no fitness if it decreased:

ρv(t) =



1 if M tv > M

t−1
v

0.5 if M tv =M
t−1
v

0 if M tv < M
t−1
v

0 < t ≤ τ (11)

For example, if there were 12 Y components at t = 5 and 14 at
t = 6, then ρY(t = 6) would be assigned a value of 1. The function
ρ encourages increased quantities of components from one time step
to the next, but does not harshly penalize fitness when production
declines.

The growth measure fg is then calculated by summing all ρv values



and then dividing by the maximum attainable fitness

fg =
1

τc

∑
v∈V

τ∑
t=1

ρv(t), (12)

so fg calculates a measure of how well the supply of all components
increased over time. One might propose simply using a function that
assigns high fitness when the total component count increases over
time. However, since this does not distinguish among individual
component types, such a function could encourage growth of only
one or possibly two components, as this will satisfy such a function.

The relative position measure fp is the most important fitness mea-
sure of the three presented here. If a rule table is approximating
support for self-replication, it would be expected that an individ-
ual component would frequently find itself surrounded by the same
components that surrounded it in the seed structure. The func-
tion fp measures the degree to which such relative positionings are
satisfied over time. Note that correct relative positions do not neces-
sarily have to occur simultaneously (i.e., during the same time step)
among the components of the structure in order for partial fitness to
be awarded. The ability of fp to give partial fitness in this manner
proved to be critical to providing the GA with positive reinforcement
needed to search effectively.

The seed structure plays a critical role in deriving the function fp
since it contains the relative positioning information. The adjacen-
cies contained in the seed structure are formulated in terms of an
adjacency vector, s = (sv1 , sv2 , . . . , svc), representing the number of
neighborhood-adjacent components for each component type. Here
svi represents the number of components that are neighborhood-
adjacent to component vi in the seed structure. Examples of adja-
cency vectors are shown in Figure 11.

The function mv(t) is the number of neighbors of component v at
time t that were the same type and in the same relative position as
in the seed. The function σv(t) represents to what degree, at time
t, all the components of component type v have the same neighbors



(a) A B s = (1, 1)

(b)
A B

C
s = (1, 2, 1)

(c)
A B

C D
s = (2, 2, 2, 2)

(d)
A B C

D
s = (1, 3, 1, 1)

Figure 11: Examples illustrating the adjacency vector of various seed
structures.

as in the seed and is defined as:

σv(t) =

{
0 if M tv ≤ 1
mv(t)
M tv · sv

if M tv > 1
(13)

When M tv ≤ 1, component v is extinct or is presumably part of the
seed. When M tv > 1, σv(t) is the ratio of mv(t) to the maximum
value possible. Thus σv(t) can never exceed unity because mv(t)
represents the number of adjacent cells that matched correctly, and
the denominator represents the total number of adjacent cells. As in
the growth fitness measure, a τ × c table of values is generated by σ.
Measure fp is then defined to be the mean of σv(t) over component
types and time, weighted by s as follows:

fp =
1

τ
∑
v∈V sv

∑
v∈V

τ∑
t=1

svσv(t) (14)

The adjacency vector s as used in Eq. (14) gives higher priority to
components that have more neighbors in the seed structure. For
example, the B component in Figure 11(d) receives a normalized
weight of 0.5 and the other components each receive 0.17.

Lastly, the isolated replicant fitness measure fr correlates fitness with
increasing numbers of isolated replicants formed during the course



of a simulation. In contrast to the relative position fitness measure,
fr provides little if any positive reinforcement to the GA during the
beginning of the discovery process since no replicants are typically
present. Its main purpose is to guide the GA toward fitter and fitter
self-replicating structures once nascent ones have been discovered.

Let rt represent the number of isolated replicants in configuration Ct.
Then fr is calculated as a sigmoid/logistic function of the maximum
rt obtained in the simulation:

fr =
1

1 + e−(max(rt)−θ)
(15)

The constant θ represents the inflection point of the sigmoid, and a
value of 4.0 was typically used. This allows fitness to increase at a
faster rate during periods when two or three isolated replicants are
seen, and at a slower rate when more than four appear.

The GA was iterated over many generations until either the best of
generation individual achieved a fitness greater than 0.9, or until it
reached a prespecified number of generations. The main GA param-
eters used were: population size of 100, crossover rate between 0.6
and 0.8, mutation rate between 0.08 and 0.10, and a maximum of
2000 generations.

An overview of the technique is depicted in Figure 12. The approach
taken here is to execute numerous independent GAs, and use statis-
tical methods to analyze the results of the set of GAs. As it is used
here, one “experiment” is taken to be a set of 100 trials, with each
trial being an identical GA except that the stream of random num-
bers differs from one instance to the next. The top box of Figure 12
depicts the common inputs to all of the independent GAs. While
executing, each GA stores the highest-fitness rule table it has ever
evaluated, and stops when the convergence criteria are met. At that
point, the highest-fitness rule table is its output (Figure 12, mid-
dle). The outcome of each trial is either success (a self-replicating
structure found) or failure. Such a decision must be made by manual
examination of a subsequent simulation, since the rule table with the
highest fitness value may not always conform to requirements. The
quantity of self-replicating structures found divided by 100 (trials)



is called the yield. The goal of a given experiment is to maximize
the yield.

GA2GA1 GA100

Examine by Simulation

Select Non-trivial
Self-replicating Structures

Seed Structure,
Fitness Functions,

GA Parameters

Trials

Highest Fitness
Rule Tables

Calculate Yield

Figure 12: Overview of experimental method.

We calculated the statistical significance of the yields obtained from
each experiment. Comparing the yield found using the genetic algo-
rithm in an experiment to the yield found via random search allowed
us to gauge the effectiveness of the search process. For every experi-
ment that was run, comparable trials using random search were also
done. In each trial of random search, zero self-replicating structures
were produced. Applying Fisher’s Exact test, let d represent the
number of replicants discovered by the GA. The 2× 2 table can be
written:

# successes # failures
GA d 100− d

Random Search 0 100

We use this statistical test to calculate the statistical significance for



our results in the next section.

4 Experimental Results

The experiments conducted can be classified according to the size of
the seed structure used. With the computational resources available,
structures having two, three, or four components were feasible to use
in the experimental framework described above. For example, ex-
periments using four-component structures required approximately
one week of dedicated time on a 40-node processor farm consist-
ing of 275 MHz DEC Alpha processors. The limitations on this
resource allowed for only three experiments to be conducted using
four-component seed structures.

For each of the seed structures (Figure 10), two variations of cellular
automata models were used. We call the CA model using orientation
sensitive input the “standard” CA model, since it is identical to what
has been used in research to date. We included it because it has been
studied the most with respect to self-replicating structures and it is
desirable to see how it performs compared to CA models that use
orientation insensitive input.

In the context of the fitness calculation of F (Eq. (10)), it is desired
to optimize F by finding an ideal vector w with which to weight the
independent fitness measures fg, fp, and fr. A second meta-level
GA [11] was used to find this weight vector. Under the control of
the meta-GA, the primary GA was executed repeatedly. Since the
primary GA was resource intensive by itself, experimenting with the
meta-GA required that smaller GA parameters be used. A popula-
tion of 20 14-bit individuals was used, with each individual encoding
weights w1, w2, w3. The fitness function employed for the meta-GA
was the fr fitness measure described above. Thus if a primary GA
run was able to find isolated replicants, this would give high fitness
to a specific weight vector, which would then be bred into the next
population of the meta-GA. A thorough study of weight vector op-
timization was deemed prohibitive, but the weight vectors found in



about 10 meta-GA runs generally produced better results than those
found during manual trial and error.

4.1 Production of Replicants

Table 1 presents the yields of self-replicating structures found during
100 trials for the CA models and seed structures studied. The labels
CAoii and CAosi denote the cellular automata model using orienta-
tion insensitive input and orientation sensitive input, respectively.

Table 1: Highest numerical yields from each experiment.

Seed Names Yields
Structure CAoii CAosi CAoii CAosi

A B PS2WI9V PS2W9V 0.93 0.49

A B

C
PS3WI13V PS3W13V 0.22 0.03

A B C

D
PS4WI17V PS4W17V 0.02 0.00

Beginning with the 2-component structures, the model with orien-
tation insensitive input had the most successful results with 93 dis-
covered self-replicating structures. While each of the 93 rule tables
are distinct, many of the self-replication processes were qualitatively
similar.

For the 3-component experiments, it is seen that the CA model with
orientation insensitive input again had the highest yield. The ori-
entation sensitive input CA model had a yield of only 3%, which
is not statistically significant at the 0.05 level of significance using
Fisher’s Exact test. Three-component yields were lower than that



for 2-components, indicating that the discovery process is more dif-
ficult for larger structures. This agrees with the intuition that self-
replication processes for 3-component structures are more complex
than for structures having two components.

In the 4-component experiments, the CAoii model had the only non-
zero yield. Although not statistically significant at the 0.05 signif-
icance level, it is of interest that the GA was able to discover 2
self-replicating behaviors in only the CAoii model, the model which
gave the best results in the other experiments.

These results suggest that by using the orientation insensitive input
paradigm, higher yields of self-replicating structures may be found.
One of the potential reasons for the higher yields in the CAoii model
is that it has the smallest search space size of the two models, and
thus the GA may have a slightly easier search task. To quantify the
correlation between increasing yields and decreasing search space
sizes, we calculated the sample correlation coefficient r for the three
seed structures shown in Table 1: r = −0.237 for the 2-component
seed, r = −0.406 for the 3-component seed, and r = −0.499 for the
4-component seed. All coefficients are negative, indicating that as
the search space search increases, the yields decrease. With values
of r ranging between −0.2 and −0.5 we can posit that there is some
degree of correlation, but not strongly so.

4.2 Discovered Structures

Representative samples of the automatically discovered self-replicat-
ing structures are shown in this section, and are of interest in them-
selves in that they have significant differences from past manually-
designed self-replicating structures [5], [19], [38]. A naming conven-
tion is established so that each structure can be given a unique name
and the underlying cellular space model can be easily identified. The
notation in [38] is used, augmented with the prefix PS to indicate
polyomino structures, and the letter I is added prior to the number
of states field to denote orientation insensitive input. Table 1 lists
six structures using this naming convention.



Figs. 11–13 present the first nine time steps of configurations for two
typical 3-component structures and a 4-component structure. These
structures differ from previously reported hand-coded structures in
unanticipated ways. Most striking is the way parent structures move
while replicating. In addition, instead of “dead structures” forming
inside of an expanding colony of replicants (common phenomena in
previous work), we see that less organized “debris” forms due to
collisions of moving structures (see Figure 16).
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Figure 13: Self-replicating structure PS03WI13V. The seed structure
moves downward on successive time steps, producing ro-
tated replicants. A 5-step replication process can be seen,
and production of the second replicant (t=4) begins while
the first replicant is still forming. Thus the first isolated
replicant appears at t=5 and the second at t=6. Each
replicant is rotated and forever moves in a straight line
producing rotated replicants of its own.



ABC
D

t=0

B

C

D
C

t=1

B

B

C DC

D
C

t=2

A

BB

B

C
D

D
C

C

D
C

t=3

A
B

B

B

B

D

C
DD

CD

C

D

C

C

t=4

A

A

B

B

B

B

B

C
D

C

D

C
D

C

D

C DC

C

t=5

A

BB
B

B BB

B

A

C
D

D
C

C

D

C C

D

C

C

D

C
D

D
C

C

C

t=6

A

A

B

B

B

B B

B

B

B
B

B

B

DD

C
DD

C CD

C

D

C D

D

C

C

CD

C

D

C
DD

CD

C

C

C

t=7
A

A

A

A

A

A
B

B B

B

B

B

B

B

B

B

B

B

B

B

D

C
D

C

D

D

A

D D

C

D

C
D D
C AC

D

C
D

C

D

C
D

C

C DC

t=8

Figure 14: Self-replicating structure PS04WI17V. The seed structure
moves towards the right on successive time steps and pro-
duces two replicants: the first is seen at t=4 and then
again at t=7 along with the second replicant (upper right
quadrant of each respective frame). These replicants are
rotated 90◦ counterclockwise and proceed upward. Dur-
ing the production of the first replicant, debris forms
(near coordinate system origin of t=3 and t=4) and co-
alesces into two structures seen at t=5, lower left. One
structure moves downward and attempts to self-replicate
but due to crowding, is unable. The other moves to the
left and produces its first replicant at t=8 (lower left
quadrant).
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Figure 15: Self-replicating structure PS03W13V. The seed structure
proceeds downward while producing an isolated replicant
every four time steps. Note that the first replicant is
fully formed at t=2, yet not isolated. A unique behavior
seen in this structure is the fact that there are no unused
components during much of the colony formation (later,
the colony collapses in on itself and collisions occur).
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Figure 16: Self-replicating structure PS03WI13V at time step 38 illus-
trating formation of debris inside of the expanding colony.



4.3 Statistical Testing

Employing Fisher’s Exact test as described in the previous section, it
is relatively easy to show that when there are four successes (four self-
replicating structures discovered in 100 trials), p=0.061, and with
five successes, p=0.029. Thus a yield of five or more self-replicating
structures is statistically significant at the 0.05 significance level.
For the experimental results presented in Table 1, it is seen that
some yields are not statistically significant at the 0.05 significance
level. For example, in the 3-component experiments, while the 22%
yield is statistically significant, the 3% yield from the CAosi model
is not. Also, both of the 2-component experiments and none of the
4-component experiments gave statistically significant results at the
0.05 significance level.

4.4 GA Performance

A typical GA performance graph showing the behavior of individual
fitness measures is shown in Figure 17. This GA run produced a
self-replicating structure using F = 0.05fg +0.75fp+0.20fr. In this
case the overall fitness value for a rule table mainly comes from the
relative positions of components. Less important are the isolated
replicants and growth of components. However, there is a deeper
interpretation. The apparently insignificant growth measure plays a
key role in the early generations of the GA, the relative position sub-
sequently maintains a steady increase in F , and the isolated replicant
measure serves to lock-in a newly discovered self-replicating struc-
ture. These behaviors suggest that the three parts of the fitness
function support each other in complex and unanticipated ways.

Figure 17 shows values of F , fg, fp, and fr for the highest ranking
rule table of each generation. The growth measure fg is seen to
be the most volatile, and this agrees with intuition: since it has
the smallest weight in F , larger fluctuations are easily tolerated and
have less of an effect on F . The relative position measure fp remains
the highest contributor in most generations, which is not surprising



since it has 75% of the weight in F . The isolated replicant measure
fr, being the hardest fitness measure to satisfy, remains near zero
for many generations until the other measures discover a rule table
that promotes elements of a self-replicating process.

As can be seen in Figure 17, during the first few generations, the
growth measure increases rapidly, helping to prime the search. The
growth measure is the easiest way of gaining fitness since it is only
concerned with quantities of components and not positioning. The
relative position measure increases more slowly, as increasing num-
bers of components gain proper positioning. Near generation 150,
isolated replicants begin to proliferate. The isolated replicant mea-
sure then increases quickly and the GA converges, with only small
refinements being made.

Typically performance curves exhibit two regions of behavior, as seen
in Figure 17. The first region is characterized by high component
growth: fg > fp > fr. The performance enters the second region
when the isolated replicant measure dominates, indicating conver-
gence. In this region we have: fr > fp > fg. Since growth is
weighted the least, it has less of an effect when the other measures
are elevated.

A simple experiment was constructed to determine if each of the
three fitness measures, by themselves, can promote development of a
self-replicating structure. If none of the individual fitness measures is
able to produce such a structure, this suggests that the emergence of
self-replication is dependent on the interactions and combined effects
of the individual measures. The three experiments involve setting the
weight vector w = (wg, wp, wr) as w = (1, 0, 0), w = (0, 1, 0), or w =
(0, 0, 1). With each of these three weight vectors, no self-replicating
structures were ever discovered in 100 GA runs (using 3-component
seed structures), suggesting that the fitness measures interact and
depend on each other to promote self-replicating behaviors.
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Figure 17: Individual fitness measure values for the best-of-
generation rule table during GA discovery of PS03WI13V.
The overall fitness function is F = 0.05fg+0.75fp+0.20fr.

5 Discussion

Our experiments show, for the first time, that rule sets for self-
replicating structures can be automatically discovered. Creating
rules for self-replicating structures is difficult and has only been
done manually in the past. Prior to this work, fewer than 30 hand-
designed self-replicating structures have been reported in 45 years.

This chapter presented three main contributions towards automating
the discovery of self-replicating structures. First, we demonstrated
that the process of discovering self-replicating structures in cellular
automata can be automated. The simulation results showed that
statistically significant amounts of such structures were generated.
The discovered structures compared favorably in terms of simplicity



with those generated manually. In addition, the structures did not
rely on extraneous components as seen in past models. The process
of replication discovered in many cases was quite interesting because
it differed in unexpected ways from previous manual attempts, e.g.,
the structures all move during self-replication.

Second, we presented a multiobjective fitness function that was able
to promote diverse self-replicating behaviors. The derived fitness
functions are general in the sense that they can be used with other re-
inforcement learning techniques. Also, these fitness measures do not
impose undue biases toward any particular process of self-replication
as evidenced by the large variety of specific rule tables found.

Third, a new variation of cellular automata was presented which pro-
duced a higher yield of self-replicating structures, yet maintained the
desirable properties of the underlying cellular model. The technique
of orientation-insensitive input is also applicable to other cellular
space models and is less demanding of computer resources. We hy-
pothesize that the discovery process is facilitated by having reduced
search space sizes under this input method.

These results suggest that further exploration in the space of possi-
ble self-replicating structures could yield numerous new structures.
The technique presented is independent of structure size, therefore
automatic production of larger self-replicating structures is feasible
for future study. Finally, this research sheds light on the process
of creating self-replicating structures, potentially leading to future
studies on the discovery of novel self-replicating molecules and self-
replicating assemblers in nanotechnology.

6 Future Work

This chapter presented a successful application of genetic algorithms
in automatically designing self-replicating structures. In conjunction
with numerous previous studies, we have provided further evidence
that techniques from evolutionary computing are effective at find-



ing solutions in large design spaces. Following this theme into the
realm of electronic design, researchers have used evolutionary com-
puting to automatically design circuits [18], [27] that are feasible to
construct. It is quite possible that, in the future, a subset of elec-
tronic system design may be routinely accomplished using evolution-
ary computing techniques. Even farther ahead lies the application
of these techniques to designing nanoelectronic structures using car-
bon nanotubes, an area which is currently being investigated by the
authors.
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